POL6: Statistics and Methods in Politics and International Relations
2020-21

Course Organiser: Pieter van Houten (pjv24@cam.ac.uk)

Teaching Staff
Pieter van Houten
Alex Lewis
Vianney Gomezgil-Yaspik
Eva Krejcova
Cristina Peñasco
Julia Wdowin
James Wood

Aims and Objectives

After completing this paper, students will:

• Have learned about a range of quantitative methods used in empirical research in the study of politics and international relations (and the social sciences more broadly)
• Have increased their ‘data literacy’, allowing them to better appreciate and critically evaluate the use of quantitative data in social and political discussion and decisions
• Be able to read critically, and comment on, published research on politics and international relations using these methods
• Know how to apply these methods correctly using an appropriate software package, and how to apply statistical tests to assess the validity of results
• Appreciate the limitations of the methods taught, and common mistakes which may be made in quantitative empirical research
• Have experience of writing up the results of empirical research
• Appreciate and think about how quantitative research can feature in particular research projects
• Have a better knowledge of how quantitative methods have been applied to various topics of interest to students of politics and international relations

Introduction to the Paper

Quantitative information (‘data’) is ubiquitous nowadays. Statistical methods are the means to describe, analyse and present data and the patterns revealed by them. Statistical analysis is widely used in the social sciences, including in the study of politics and international relations. For example, and not surprisingly, this is the case for many studies of elections and voting behaviour, public opinion, and parliamentary decisions. However, it also prominently features in studies of issues such as inter-state wars, civil conflict, corruption,
state building and regime transformations—and virtually any other issue we focus on in the study of empirical politics. (This is not to say that quantitative methods are the only, or necessarily the best, way to study these issues. As students will learn in this paper, there are both strengths and limitations to these research methods.) Outside the academic world, data and statistical methods are widely used in public policy-making, the financial sector, management consultancy, market research, and a whole range of other sectors and professions.

This paper introduces students to statistical methods and their applications to political and international relation issues and questions. The acquired skills will be useful for critically engaging with research that uses these methods, for conducting such research (as practised in the projects for this paper, and possibly for third-year dissertations), and, as indicated above, for a variety of possible future career paths.

The paper consists of two parts. The first part teaches students a variety of quantitative methods that can be applied to the study of political and international relations issues. This taught part takes up for the first ten weeks of the paper (all of Michaelmas term, and the first two weeks of Lent term). The second part consists of a data analysis project, on a topic that students can choose from a list provided to them. In this project, students need to formulate a research question, analyse secondary data to answer this question (applying some of the methods taught in the first part of the paper), and write a 5,000-word report on the nature and results of their project.

Paper Format

The first part of the paper is taught by lectures, practical sessions and supervisions. The lectures will introduce the various statistical techniques and methods, while the corresponding practical sessions will allow the students to apply these. The practical sessions are crucial to gain a better understanding of the techniques and methods (and, thus, to be able to perform well in the paper’s exam), and to obtain the skills required for the data analysis project in the second part of the paper (and, thus, to be able to do well in the other half of the assessment for the paper), including the ability to use the software package that we will use (which is the statistical package R). For the supervisions for this part of the paper, students will be given specific tasks that will require them to go into further detail on some of the issues covered in the lectures and practical sessions. Detailed information on the supervision assignments will be provided as the course progresses. Students should expect to do up to three supervisions for this part in Michaelmas, and two supervisions in the first part of Lent.

The second part of the paper consists of an introductory session on how to approach a data analysis project, and three supervisions on a student’s individual project.

In Easter term, there will be a general revision session and a revision supervision in preparation for the exam.
Assessment

Assessment for the paper consists of two elements. First, a two-hour exam at the end of the year that tests the students’ knowledge of the material taught in the first part of the paper. The exam has one question, divided into several sub-questions, which all candidates have to answer. A mock exam is included at the end of this paper guide, together with the examiners' reports from the last few years. Second, a 5,000-word report on the data analysis project, which is due early in Easter term. Each assessment element makes up 50% of the overall mark for the paper.

Information on the marking criteria for the exam and report is provided here.

Course Materials

This paper differs from other papers in the HSPS and History & Politics Triposes in that it does not have a very extensive reading list. In fact, the core materials for this course are the lecture slides and the various other materials related to the lectures and practical sessions in the first part of the paper. These materials will be made available through the paper’s Moodle site. Students should make sure to study these materials carefully when preparing for the exam.

Although the lecture slides and practical session notes are the core materials for this paper, it will also be useful at times to consult a statistics textbook. There are many such textbooks. Useful ones are:

- Andy Field, Jeremy Miles and Zoë Field, Discovering Statistics Using R (London: Sage, 2012) [Although this book is not cheap, students may want to consider buying it]

The most relevant chapters from these textbooks for this paper are indicated in the table with the specific lecture topics below.

Students may also find it useful – especially early in the course, and particularly if they have not studied statistics in any form before – to read general and non-technical accounts of statistical concepts, ideas and reasoning. Suggestions of good books of this nature are:

Most of the paper will focus on trying to identify patterns in existing data. While we, in practice, take these data as a given starting point, this does not mean that we should uncritically accept any available data. In fact, one of the objectives of the course is to give students the skills to critically engage with data (which can have very important political functions) and their limitations and problems. Examples of books that provide good and
interesting discussions of the role of data in politics and society – and their possible biases, omissions and problems – are:

A list of possible further readings is provided below after the description of Part 1 of the paper.

Structure of the Paper

PART 1: Quantitative Methods for Politics and International Relations

This part introduces students to various statistical methods: descriptive statistics, bivariate correlation, multivariate linear regression, logistic regression, and multi-level regression. Students will be provided with an introduction to these methods in the lectures, illustrated with examples from the study of politics and international relations, and will start to apply them in the practical sessions (using the statistical software R).

The first two lectures provide background to the paper and describe the role of quantitative methods in the study of politics and international relations (providing a summary of the origins and evolution of the use of quantitative methods in this field, gives some examples of research using these methods, indicates the roles that these methods play in the research process, and the extent to which so-called ‘big data’ research has the potential to increase the scope and opportunities).

The module consists of an introductory session, twenty lectures of about 50 minutes each, ten weekly practical sessions (which are two hours long, except for the first two weeks of Michaelmas term when there will be four hours of practical sessions), and four or five one-hour supervisions (which will be done face-to-face wherever possible).

The introductory session at the start of Michaelmas term will explain the nature and organisation of the paper, and help students with the installation of the statistical software on their computers.

The lectures will be pre-recorded and made available online (on the paper’s Moodle site). Each week three lectures will be made available (in total, this will be about 2 hours of lectures each week). If there is demand for this, the lecturer may do one or two ‘live’ Q&A sessions in the course of Michaelmas term so that students can ask questions related to the
The contents of the lectures; however, it is anticipated that the practical sessions and supervisions will provide sufficient opportunity for asking questions. Students are expected to look at the relevant lectures before the practical session each week.

The lecture schedule (with some suggested readings) is as follows:

<table>
<thead>
<tr>
<th>Week</th>
<th>Lectures</th>
<th>Related readings</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1. Data, statistics and politics</td>
<td>Kellstedt & Whitten: 4</td>
</tr>
<tr>
<td></td>
<td>2. Quantitative methods in Politics/IR: an introduction</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. Statistics and research design</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>4. Distributions and variables (I)</td>
<td>Field et al: 1.7, 2.4, 5.5</td>
</tr>
<tr>
<td></td>
<td>5. Distributions and variables (II)</td>
<td>Tarling: 3</td>
</tr>
<tr>
<td>3</td>
<td>7. Statistical inference from samples (I): introduction</td>
<td>Field et al: 2.3</td>
</tr>
<tr>
<td></td>
<td>8. Statistical inference from samples (II): principles</td>
<td>Kellstedt & Whitten: 7</td>
</tr>
<tr>
<td></td>
<td>9. Statistical inference from samples (III): election polling</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>10. Hypothesis testing; introduction to bivariate associations</td>
<td>Field et al: 2.6, 6, 18</td>
</tr>
<tr>
<td></td>
<td>12. Bivariate associations (II): correlation</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>13. Simple (bivariate) linear regression</td>
<td>Field et al: 7</td>
</tr>
<tr>
<td></td>
<td>14. Linear regression: goodness of fit</td>
<td>Tarling: 5, 6</td>
</tr>
<tr>
<td></td>
<td>15. Multiple linear regression (I): introduction</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>16. Multiple linear regression (II): examples</td>
<td>Field et al: 8</td>
</tr>
<tr>
<td></td>
<td>18. Multiple linear regression (IV): assumptions</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20. Binary logistic regression (II): example from UK elections</td>
<td></td>
</tr>
<tr>
<td></td>
<td>21. Binary logistic regression (III): further examples</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>22. Multinomial logistic regression (I): elections example</td>
<td>Field et al: 8</td>
</tr>
<tr>
<td></td>
<td>23. Multinomial logistic regression (II): principles</td>
<td>Tarling: 5, 6</td>
</tr>
<tr>
<td></td>
<td>24. Logistic regression: further issues/example</td>
<td></td>
</tr>
<tr>
<td></td>
<td>26. Multi-level regression (II): random intercept model</td>
<td>Tarling: 9</td>
</tr>
<tr>
<td></td>
<td>27. Multi-level regression (III): examples</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>28. Multi-level regression (IV): random slope model</td>
<td></td>
</tr>
<tr>
<td></td>
<td>29. Multi-level regressions (V): further issues</td>
<td></td>
</tr>
<tr>
<td></td>
<td>30. Wrap-up and conclusion</td>
<td></td>
</tr>
</tbody>
</table>

The practical sessions are held weekly. Sessions are scheduled for Fridays from 9 to 11am and from 1 to 3pm. The sessions in the first two weeks (which are ‘double sessions’, i.e. four hours per week) will be done online, and provide an introduction to the software that we use in the paper. The other sessions (which will be two hours per week – that is students will be assigned to one or two of the session) will focus on applying the statistical methods introduced in the lectures. These sessions will be done either face-to-face or online, depending on the situation and guidelines in the Michaelmas and Lent terms (currently, it is most likely they will be online). The schedule for the practical sessions is:
<table>
<thead>
<tr>
<th>Date</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 9 Oct</td>
<td>Introduction to R (I) [4 hours]</td>
</tr>
<tr>
<td>2 16 Oct</td>
<td>Introduction to R (II), descriptive statistics [4 hours]</td>
</tr>
<tr>
<td>3 23 Oct</td>
<td>Samples and distributions</td>
</tr>
<tr>
<td>4 30 Oct</td>
<td>Bivariate associations: correlations, chi-square</td>
</tr>
<tr>
<td>5 6 Nov</td>
<td>Linear regression (I)</td>
</tr>
<tr>
<td>6 13 Nov</td>
<td>Linear regression (II)</td>
</tr>
<tr>
<td>7 20 Nov</td>
<td>Logistic regression (I)</td>
</tr>
<tr>
<td>8 27 Nov</td>
<td>Logistic regression (II)</td>
</tr>
<tr>
<td>9 22 Jan</td>
<td>Multi-level regression (I)</td>
</tr>
<tr>
<td>10 29 Jan</td>
<td>Multi-level regression (II)</td>
</tr>
</tbody>
</table>

Reading list

As indicated above, the core readings and materials for this module (and the paper as a whole) are the lecture notes and additional materials provided by the lecturers. However, it may also be useful to consider some further readings on the issues and methods discussed. This list provides some suggestions in addition to the texts mentioned earlier (*: especially recommended):

Some applications of the discussed methods and models (some of these will be used in the lectures, practical sessions and supervisions) are:

Articles with further applications of the discussed methods may be added in due course.

PART 2: Data analysis project

In this part of the paper, students will undertake a data analysis project and produce a 5,000-word report on the project. This report is formally assessed, and contributes 50% to a student’s overall mark for the paper. Students will choose a particular topic from a provided list and conduct a data analysis project on this topic. This involves formulating a research question and possible answers to the question, selecting data to address the question, conducting a statistical analysis, and writing a report on the nature and results of the project.

Students will need to indicate their choice of topic early in Lent term, and the report is to be submitted by noon on Monday 3rd May 2021.

An introductory session (in week 3 of Lent term) will present the expectations for the project, discuss general issues of research design and how statistical analyses can contribute to this, and will provide an opportunity for students to ask questions about the projects. The main form of guidance on the individual projects will be provided by three supervisions (at least two of which will be individual ones).

A more detailed guide on these projects – including fuller descriptions of the topics and possible datasets, and a discussion of the expectations for the project and the report – will be provided to students separately from this paper guide.
Here is a short description of the available topics (where it should be noted that there is room in each of these for students for exploring different or alternative projects on the same theme):

1. **Voting behaviour in elections**

Elections are at the heart of the democratic process, and are consequently studied extensively. One of the key questions relates to the motivations of voters to vote for a particular party or candidate. Quantitative analyses, usually based on surveys of voters, play a crucial role in trying to answer this question. For this topic, students will use one or more datasets on British elections (which could be replaced by a different country if there are easily available datasets) to conduct a project on a particular aspect of voting behaviour.

2. **Perceptions of corruption**

Corruption is seen as a major issue and problem in many parts of the world, but seems to vary considerably across countries. Although ‘corruption’ is difficult to measure, quantitative analyses into the causes and consequences of corruption have become more prominent. Most of these analyses are based on surveys of perceptions of corruption. For this project, students will use data from some of these surveys done to explore causes and/or consequences of corruption.

3. **Attitudes towards globalisation**

As processes of globalisation have become more pervasive and intrusive, public attitudes towards this phenomenon have become politically more important (see, for example, the apparent backlash against globalisation reflected in support for populist parties and politicians). The department’s YouGov Centre for Public Opinion and Policy Analysis has in recent years done some cross-country surveys of attitudes towards globalisation. For this project, students will use data from some of these surveys to explore factors influencing these attitudes.

4. **Patterns in conflicts**

Wars between states are a core theme in the study of international relations, while intra-state wars appear to have become more important in recent years and have consequently received increasing academic attention. Quantitative studies of these phenomena have become more prominent, pioneered by the ‘Correlates of War’ project but also provided by other projects. For this POL6 project, students will select some specific conflict data to explore patterns in conflicts.

5. **Efforts to reach development goals Sustainable Development Goals (SDGs)**

States and international organisations concerned with promoting development around the world have periodically formulated a set of goals that less developed countries and aid donors should aim for. These goals have most recently been phrased in terms of
Sustainable Development Goals (SDGs; these are, for example, related to poverty, inequality, health and gender). The UN system publishes data indicating the extent to which countries are achieving SDGs, as well as many other data on these countries. In this project, students will use these data to investigate patterns and reasons for the variation in the achievement of SDGs.

Background reading on research design:

Mock Exam

Candidates should answer all questions.

Table 1 depicts the results of two regression analyses on data from round 6 of the European Social Survey (2014). The population is all persons aged 15 and over resident within private households in 29 European countries, regardless of their nationality, citizenship or language.

Model 1 is a multi-level linear regression model, in which the response variable is an *index of soft political protest behaviours*, which is coded on a scale from 0 to 7. This variable is constructed from respondents’ yes/no answers to questions about whether or not they participate in seven kinds of protest behaviour (contacting a politician or official, working in a political party or action group, working in another organization or association, displaying campaign materials, signing a petition, taking part in public demonstrations, boycotting certain products) in the past year. The value for the variable is equal to the number of ‘yes’ answers that a respondent provides.

Model 2 is a multi-level binary logistic regression model, in which the response variable is *whether a respondent has signed one or more petitions* (on any kind of issue with a political dimension) in the past year.

The explanatory variables are:

- Trust in country's parliament (ranging from ‘no trust’ – coded 0 – to ‘completely trust’ – coded 10);
- Years of full-time education completed (in years);
- Gender of respondent (0=man; 1=woman);
- Age of respondent (in years);
- Democracy Index - Economist Intelligence Unit Democracy Index (continuous variable, ranging from ‘the least democratic’ – coded 0 – to ‘the most democratic’ – coded 10)
- Gross Domestic Product per capita (in 1000s)

Table 1. Multi-level linear regression on soft political protest (model 1) and multi-level
binary logistic regression on signing petitions (model 2)

<table>
<thead>
<tr>
<th></th>
<th>Model 1</th>
<th></th>
<th>Model 2</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Soft protest</td>
<td>Petitioning</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coef</td>
<td>Std error</td>
<td>Coef</td>
<td>Std error</td>
<td>Exp(b)</td>
</tr>
<tr>
<td>Intercept</td>
<td>-1.710*</td>
<td>0.817</td>
<td>-1.48**</td>
<td>0.39</td>
</tr>
<tr>
<td>Trust in parliament</td>
<td>0.024**</td>
<td>0.002</td>
<td>0.026</td>
<td>0.015</td>
</tr>
<tr>
<td>Years of full-time education completed</td>
<td>0.070**</td>
<td>0.004</td>
<td>0.065**</td>
<td>0.007</td>
</tr>
<tr>
<td>Age in years</td>
<td>-0.001**</td>
<td><0.001</td>
<td>-0.032**</td>
<td>0.006</td>
</tr>
<tr>
<td>Gender</td>
<td>-0.041</td>
<td>0.023</td>
<td>-0.123*</td>
<td>0.060</td>
</tr>
<tr>
<td>Democracy Index</td>
<td>0.121**</td>
<td>0.054</td>
<td>0.114**</td>
<td>0.021</td>
</tr>
<tr>
<td>Gross Domestic Product/cap</td>
<td>0.018*</td>
<td>0.008</td>
<td>0.021**</td>
<td>0.006</td>
</tr>
<tr>
<td>Number of observations</td>
<td>29,112</td>
<td></td>
<td>29,112</td>
<td></td>
</tr>
<tr>
<td>R-square</td>
<td></td>
<td>0.53</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pseudo R-square</td>
<td></td>
<td></td>
<td></td>
<td>0.37</td>
</tr>
</tbody>
</table>

*p<.05; **p<.01

1. Do you think it is justified to use linear regression in Model 1?

2. Discuss two assumptions which need to hold for both regression models (Model 1 and Model 2) to be valid. How would you test for these assumptions?

3. What is the rationale for using multi-level regression in these analyses? How would you check that this is indeed justified?

4. Write the regression equation for Model 1 for a male, 30 years old, 12 years of education and with trust in parliament=5, who lives in a country with a Democracy index score of 7 and a GPD per capita of 50 (i.e. 50,000, as the units are 1000s for this variable).

5. Interpret the regression results for Model 1 for the following explanatory variables: Trust in Parliament, Gender and GDP/cap.

6. Which factor do you think has the largest effect on the soft political protest behaviours of individuals in Model 1?

7. For Model 2, formulate hypotheses for the variables Trust in Parliament, Years in Full-Time Education, and Democracy Index.

8. Interpret the regression results for Model 2 for the explanatory variables Trust in Parliament, Years in Full-Time Education, and Democracy Index.

9. Based on Model 2, how would you describe the profile of a respondent who is most likely to sign petitions?

10. Write a hypothesis that considers a cross-level interaction and justify your choice of explanatory variables.
11. What main conclusions would you derive from a comparison between the results for Model 1 and for Model 2?

12. Considering the response variable in Model 1, can you think of alternative ways of measuring ‘soft protest behaviour’? And, more generally, how do you feel the analyses here could be improved?

Examiners Reports

[Note that the exam papers in 2016, 2017 and 2018 differed from this year’s exam. They contained 3 main questions; only the first – and largest – of these is relevant for this year’s exam.]

2015-16

This paper was taught for the first time this year, and 21 candidates took the exam. The exam consisted of a mandatory Question 1 (which had several parts), and two optional questions of which candidates had to answer one. Of these optional questions, Question 2 (on how to design a quantitative project on voting behaviour in the 2014 Scottish referendum) was clearly the more popular with 19 answers. The performance of the candidates was mostly good: 6 candidates received a First class mark, 11 candidates a 2.1 mark (of which two had a mark of 69), and 2 candidates received 2.2 marks. Unfortunately, there were also one Third class mark and one Fail mark.

The average quality of the scripts was very good, and the examiners were impressed with the quality of quite a few of the answers. In particular, many of the answers to Question 2 were very strong. Most of the candidates showed a good understanding of the main elements of research design, and the best answers formulated precise research questions, indicated possible hypotheses, discussed the data required to test these hypotheses, and provided some reflections on the methodological challenges that would be involved in such a project. The few weak answers to this question covered only some of these elements, or included incoherent or inconsistent statements in parts of the answer. More generally, most answers could have discussed possible methodological challenges more (potential issues to discuss here would be the quality of the data, the difficulty to operationalize certain concepts, and the representativeness of samples). The two answers to Question 3 were not very strong, and failed to discuss in any detail the advantages and drawbacks of quantitative data to explore ‘reality’ and integrate a useful example into this discussion.

The quality of the answers to the various parts of Question 1 was somewhat mixed. The best answers showed a good understanding of statistical concepts and the models that were used in the question, and provided good substantive interpretations of the presented statistical results. Quite a few answers showed solid understanding of the issues involved, but did not sufficiently explain the answers or discuss the substantive interpretations to get a higher mark. For example, several candidates gave very concise answers to Question 1.5, focusing on only one possible rationale for using the indicated model, where there were, in fact, several reinforcing rationales (and answers were rewarded for focusing on several or
all of them). Unfortunately, there were also several weak answers which showed limited understanding of the statistical issues and concepts, or made claims that were clearly wrong.

It was disappointing to see that some of the answers to Questions 1.1 and 1.5 were missing or very limited, as the basic information to address these questions was provided on some of the lecture slides. Overall, the examiners had the impression that some candidates would have benefited from attending more lectures and practical sessions in the course of the year. However, it should be emphasized again that the performance of many of the candidates was very good.

2016-17

This year, 33 candidates took the exam: 23 second-year students and 10 third-year students. As in the previous year, the exam consisted of a mandatory Question 1 (which had several parts), and two optional questions of which candidates had to answer one. Of these optional questions, Question 2 (on how to design a quantitative project on the effects of globalisation on the economic situation of countries and/or individual well-being) was clearly the more popular with 29 answers. The performance of the candidates was as follows: 7 candidates received a First class mark, 16 candidates a 2.1 mark (of which three had a mark of 69), and 8 candidates received 2.2 marks. Unfortunately, there were also one Third class mark and one Fail mark.

Many of the scripts were good, and there were some truly impressive answers to each of the questions. On average, the answers to Question 2 were not quite as strong as last year. Most of these answers had a good discussion of some elements of a quantitative research project on one of the themes indicated in the question, but only relatively few were able to do all the things required for an excellent answer: formulate a precise research question, indicate possible hypotheses, discuss the indicators and data required to test these hypotheses, and provide some reflections on the methodological challenges that would be involved in such a project. In particular, several answers did not provide any discussion of what measures might be used to evaluate the effect of globalisation (the main explanatory variable). Also, and as last year, more discussion of possible methodological challenges (potential issues to discuss here would be the quality of the data, the difficulty to operationalize certain concepts, and the representativeness of samples of individuals) would have improved most answers. The few answers to Question 3 were of mixed quality. The best essay provided an insightful critique and defence of the use of statistics, linking it to a discussion of the nature of the social sciences. The weaker answers made various strong but unsubstantiated claims about the use of statistics, or failed to use examples in the answer.

The quality of the answers to the various parts of Question 1 varied. The best answers showed an excellent understanding of statistical concepts and the models that were used in the question, and provided good and elaborate substantive interpretations of the presented statistical results. A very small number of scripts suggested that the candidates misunderstood the nature of the response variable (although this was explained several times in the question, including in plain language). Particularly noteworthy was the variation
in the length of answers between scripts. While some questions (for example, Questions 1.1 and 1.3) could be answered satisfactorily that way, the other questions required longer answers to be fully satisfactory and receive high marks. For example, as explained throughout the paper, ‘interpreting regression coefficients’ (Question 1.4) involves not only indicating whether variables are statistically significant, but also discussing what the substantive effect is, what conclusions can be derived from this (in relation to earlier formulated hypotheses), and what the reasons for this result might be. Similarly, ‘formulating hypotheses’ (Question 1.2) involves both indicating hypotheses and discussing possible rationales for them.

Finally, and similarly to last year, the examiners had the impression that some candidates would have benefited from attending more lectures and practical sessions in the course of the year. Overall, however, the examiners were impressed with how much knowledge and understanding of quantitative methods the candidates had been able to develop in this paper.

2017-18

This year, 22 candidates took the exam: 13 second-year students and 9 third-year students. As in the previous year, the exam consisted of a mandatory Question 1 consisting of several parts; and two optional questions of which candidates had to answer one. Of these optional questions, Question 2 on how to design a quantitative research project was much more popular with 19 answers. Question 3 pertained to the complications of employing “big data” in research.

4 candidates received a First class mark, 14 candidates a 2.1 mark (of which two had a mark of 69), and 2 candidates received 2.2 marks. Unfortunately, there were also one Third class mark and one Fail mark. Students who received First marks often received close to perfect scores on Question 1. Though this is unusual in POLIS examinations, the nature of POL6 is exceptional in that—specifically for Question 1—answers either are or are not objectively correct. The best answers to Question 1 showed an excellent understanding of statistical concepts and the models that were used in the question, and provided good and elaborate substantive interpretations of the presented statistical results. Weaker answers would provide incomplete interpretations of the quantitative results presented; for instance, discussing a coefficient’s statistical significance but not its effect size on the outcome variable. Students also sometimes did not provide a rationale for hypotheses about relationships between different variables.

Good answers for Question 2 were able to formulate a precise research question, derive testable hypotheses, discuss the data required to test these hypotheses, and provide an overview of the methodological challenges that would be involved in their proposed project. Weaker answers often failed to define key terms or esoteric statistical language, and/or did not provide a clear rationale for the proposed estimation technique they put forward. Students sometimes forgot to discuss methodological challenges that could arise, or gave this part of their answer only superficial attention. Though only a handful of students opted to answer Question 3, responses to this latter question were of about the same quality as a typical answer to Question 2. To be of top quality, essays on Question 3 had to address the
general philosophy behind applying statistical analysis to social questions, as well as developments in computing power and data management techniques that made the use of big data feasible.

2018-19

There were 18 students taking the POL6 paper this year (14 HSPS Part IIA, 1 HSPS Part IIB, and 3 History & Politics IIA). This was the first year that the paper had two elements of assessment: a report of maximally 5000 words on a data analysis project, and a two-hour exam. Each element contributed 50% to the overall mark.

The results were generally good. For the coursework element (the report on the data analysis project), 6 candidates received a First class mark, 9 candidates a 2.1 mark and 3 candidates a 2.2 mark. For the exam, 7 candidates received a First class mark, 8 candidates a 2.1 mark, and 3 candidates a 2.2 mark. Overall, this led to 5 candidates receiving a First class for the paper (three of whom received First class marks for both the coursework and the exam), 10 candidates a 2.1 mark for the paper, and 3 candidates a 2.2 mark for the paper (only one of whom received 2.2 marks for both the coursework and the exam).

For the coursework, candidates had to choose a topic from a provided list. Six candidates chose to do a project on public attitudes to globalisation, five candidates undertook a project on Sustainable Development Goals, four candidates focused on patterns of conflict, two candidates looked at perceptions of corruption, and one candidate investigated voting behaviour in British elections. The examiners were generally impressed with the quality of the analyses and reports. Most of the reports showed an ability to design a specific quantitative analysis and to present and discuss the results of the analysis in an interesting way. The very best reports presented a good question, plausible hypotheses, clearly displayed results of the analysis and a useful discussion of these results. The projects that received the highest marks were not necessarily the ones with the most elaborate and complicated statistical models, as it was more important that the report presented a coherent and convincing account of the reason for and the interpretations of the results of the analysis. However, reports which presented the results themselves in a particularly compelling way were rewarded for this.

The reports which received the lowest marks (which were in the 2.2 range) were based on rather limited statistical analyses (for example, mostly only descriptive statistics or regression analyses conducted in a way that could not really answer the posed research question) and/or some errors in the set-up of the statistical models. In addition, these reports were not presented in a very clear way, especially with respect to the discussion of the results of the analysis. The reports which received marks in the 2.1 range generally avoided these problems, but displayed various minor weaknesses. These included (one or more of) the following: some of the statistical results and/or hypotheses were not presented in a sufficiently clear way, too much emphasis on certain aspects that were ultimately less relevant for the conclusions of the analysis (such as lengthy discussions of descriptive statistics or the definition of variables), a discussion of the results which was more ‘mechanical’ (giving the statistical interpretations of each variables) than ‘substantive’ (focusing primarily on the variables relevant for the posed question and on the broader
interpretation of the results). Some of the reports also lacked some overall coherence (where the different aspects and sections were not sufficiently connected to each other). However, it should be reiterated that the overall quality of the reports was impressive, considering that for most students this paper is their first exposure to quantitative analysis.

The exam consisted this year of one mandatory question, which was divided into 11 sub-questions. The examiners were pleased with the quality of the exam scripts. Particularly pleasing was that, in contrast to previous years, there were no scripts that received extremely low marks. All candidates showed that they understood the basics of the statistical methods taught in the paper. It appears that the addition of the coursework element has reduced the risk that candidates are seriously underprepared for this paper’s exam.

The characteristics of the stronger and weaker scripts were similar to those in previous years. The better scripts showed a correct understanding of the statistical concepts and techniques used and provided good and extensive substantive interpretations of the indicated statistical results. The weaker scripts included various mistakes on the interpretation of the statistical results, misunderstandings of key concepts, and/or failed to provide any answers to some of the sub-questions. A noteworthy aspect was the variation in the length of answers between scripts. Some scripts provided rather short answers, even to the questions that asked about the interpretation of the results (where the expectation is that a good answer discusses both statistical and substantive interpretations) or the formulation of hypotheses (which should include possible rationales or justifications for them for the answer to get maximal marks).

2019-20

The number of students doing the assessments for this paper was affected by the COVID situation. While there were 18 students who did the paper this year (5 HSPS Part IIA, 7 HSPS Part IIB, and 6 History & Politics IIB), in the end 14 students submitted the coursework element (a report of maximally 5000 words on a data analysis project) and 12 students took the two-hour online exam.

The results for the assessments were good. The average mark for the coursework element was 68.0, with 4 candidates receiving a First class mark and 10 candidates receiving a 2.1 mark (one of which was a mark of 69). For the exam, the average mark was 66.9, with 3 candidates receiving a First class mark and 9 candidates a 2.1 mark (one of which was 69). Only the 6 Part IIB candidates who completed both assessment elements received an official overall mark for the paper this year (with each element contributing 50% of the overall mark) – 3 candidates received a First class mark for the paper and the other 3 candidates received a 2.1 mark (one of which was a 69). Unlike in previous years, there were no 2.2 marks (or lower) in either part of the assessment, but this may have been partly the result of ‘self selection’ of candidates who decided to do the assessment in this year’s unusual circumstances.

For the coursework, candidates had to choose a topic from a provided list. The choices of topics were more clustered than last year: six candidates undertook a project on Sustainable
Development Goals, six candidates investigated voting behaviour in British elections, and two candidates chose to do a project on public attitudes to globalisation. (None of the reports focused on the conflict or corruption topics.) As last year, the examiners were impressed with the quality of the analyses and reports. All the reports showed an ability to formulate a research question and design a specific quantitative analysis to address it. The presentation and discussion of the results were generally competent and, particularly in the best reports, interesting and innovative. The reports that received the highest marks presented convincing accounts of the reason for and the interpretations of the results of the analysis. Reports that received marks in the 2.1 range displayed some of the weaknesses that were pointed out in last year’s examiners report too: lack of some clarity in the presentation of results and hypotheses (e.g. by including two separate factors in the same hypothesis), too much attention dedicated to preliminary aspects of the analysis (such as lengthy discussion of descriptive statistics or the explanation of very basic statistical issues and principles), insufficient attention to the substantive interpretation of results (which, in some case, could have been improved by linking the analysis and reports more to existing literature), and some lack of coherence between different parts of the report. However, it is worth emphasising again that the overall quality of reports was impressive and encouraging.

The quality of the exams was also high. All candidates showed a solid understanding of the basic statistical principles and models covered in the paper, and provided sensible answers to most of the questions. The best scripts were particularly strong on formulating interpretations of the results and careful in discussing the implications of results for hypotheses and arguments (for example, indicating clearly what it means to have low p-values and the implications for the rejection of null hypotheses and the support for – but not necessarily confirmation of – alternative hypotheses). The better scripts also provided more convincing answers to the broader questions about the presented results (questions 1.3 and 1.6), and/or presented more plausible answers to the questions that were probably less expected and predictable (questions 1.8, 1.9 and 1.10). Some of the specific weaknesses in the scripts that received a 2.1 mark were a lack of justification for the hypotheses in answers to question 1.4, limited substantive interpretations in answers to question 1.5, some mistakes in how to assess the ‘maximum effects’ of a variable when dealing with odds ratios in answers to question 1.7, and a lack of attention to the other regression assumptions in answers to question 1.8 (in order to better justify why one of the assumptions was picked for the answer). (Note that the 2.1 scripts typically only exhibited some, and not all, of these weaknesses.) Not surprisingly, candidates found question 1.10 challenging, with only some comprehending the basic interpretation of an ‘interaction effect’.